Extensions 1→N→G→Q→1 with N=C22×Dic13 and Q=C2

Direct product G=N×Q with N=C22×Dic13 and Q=C2
dρLabelID
C23×Dic13416C2^3xDic13416,225

Semidirect products G=N:Q with N=C22×Dic13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic13)⋊1C2 = Dic134D4φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):1C2416,102
(C22×Dic13)⋊2C2 = C22.D52φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):2C2416,107
(C22×Dic13)⋊3C2 = C2×D26⋊C4φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):3C2416,148
(C22×Dic13)⋊4C2 = D4×Dic13φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):4C2416,155
(C22×Dic13)⋊5C2 = C23.18D26φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):5C2416,156
(C22×Dic13)⋊6C2 = Dic13⋊D4φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):6C2416,160
(C22×Dic13)⋊7C2 = C2×C23.D13φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):7C2416,173
(C22×Dic13)⋊8C2 = C2×D42D13φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):8C2416,217
(C22×Dic13)⋊9C2 = C22×C13⋊D4φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13):9C2416,226
(C22×Dic13)⋊10C2 = C22×C4×D13φ: trivial image208(C2^2xDic13):10C2416,213

Non-split extensions G=N.Q with N=C22×Dic13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic13).1C2 = C26.10C42φ: C2/C1C2 ⊆ Out C22×Dic13416(C2^2xDic13).1C2416,38
(C22×Dic13).2C2 = C23.11D26φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13).2C2416,98
(C22×Dic13).3C2 = C22⋊Dic26φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13).3C2416,99
(C22×Dic13).4C2 = C2×C26.D4φ: C2/C1C2 ⊆ Out C22×Dic13416(C2^2xDic13).4C2416,144
(C22×Dic13).5C2 = C2×C523C4φ: C2/C1C2 ⊆ Out C22×Dic13416(C2^2xDic13).5C2416,146
(C22×Dic13).6C2 = C22×Dic26φ: C2/C1C2 ⊆ Out C22×Dic13416(C2^2xDic13).6C2416,212
(C22×Dic13).7C2 = C26.M4(2)φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13).7C2416,87
(C22×Dic13).8C2 = C22×C13⋊C8φ: C2/C1C2 ⊆ Out C22×Dic13416(C2^2xDic13).8C2416,209
(C22×Dic13).9C2 = C2×C13⋊M4(2)φ: C2/C1C2 ⊆ Out C22×Dic13208(C2^2xDic13).9C2416,210
(C22×Dic13).10C2 = C2×C4×Dic13φ: trivial image416(C2^2xDic13).10C2416,143

׿
×
𝔽